Amphiphilic polysilane-methacrylate block copolymers — Formation and interesting properties —
نویسنده
چکیده
Several polysilane block copolymers have been prepared by the newly developed method, anionic polymerization of masked disilenes. Especially amphiphilic block copolymers of poly(1,1-dimethyl-2,2-dihexyldisilene) and poly methacrylate are focused. Poly(1,1-dimethyl-2,2-dihexyldisilene)-b-poly(2-hydroxyethyl methacrylate) (PMHS-b-PHEMA) is the first example of the amphiphilic polysilane copolymer that can form micelles in polar solvents. Poly(1,1-dimethyl-2,2-dihexyldisilene)-b-poly(methacrylic acid) (PMHS-b-PMAA) is more polar than (PMHS-b-PHEMA), soluble in water to form micelles. The cross-linking reaction of (PMHS-b-PMAA) with 1,10-diaza-4,7-dioxadecane and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride afforded the first shell cross-linked micelles (SCM) of polysilane. In addition to interesting properties, SCM is indicated to be able to form hollow sphere particles (hollow shell cross-linked micelles, HSCM) by a photochemical process. Reversible encapsulation of guest molecules by SCM and HSCM is demonstrated. Finally, SCM can be used as the template for the synthesis of metal nanoparticles, which may be used as catalysts.
منابع مشابه
PLMA-b-POEGMA Amphiphilic Block Copolymers as Nanocarriers for the Encapsulation of Magnetic Nanoparticles and Indomethacin
We report here on the utilization of poly(lauryl methacrylate)-b-poly(oligo ethylene glycol methacrylate) (PLMA-b-POEGMA) amphiphilic block copolymers, which form compound micelles in aqueous solutions, as nanocarriers for the encapsulation of either magnetic iron oxide nanoparticles or iron oxide nanoparticles, and the model hydrophobic drug indomethacin in the their hydrophobic core. The mixe...
متن کاملEnhanced stability of core-surface cross-linked micelles fabricated from amphiphilic brush copolymers.
"Stealth" nanoparticles made from polymer micelles have been widely explored as drug carriers for targeted drug delivery. High stability (i.e., low critical micelle concentration (CMC)) is required for their intravenous applications. Herein, we present a "core-surface cross-linking" concept to greatly enhance nanoparticle's stability: amphiphilic brush copolymers form core-surface cross-linked ...
متن کاملInvertible vesicles and micelles formed by dually-responsive diblock random copolymers in aqueous solutions.
Dually responsive diblock random copolymers poly(nPA0.8-co-DEAEMA0.2)-block-poly(nPA0.8-co-EA0.2) were made from N-n-propylacrylamide (nPA), 2-(diethylamino)ethyl methacrylate (DEAEMA) and N-ethylacrylamide (EA) via reversible addition-fragmentation chain transfer (RAFT) polymerization. Copolymers of different block length ratios, poly(nPA28-co-DEAEMA7)-block-poly(nPA29-co-EA7) (P1) and poly(nP...
متن کاملFormation of surface-grafted polymeric amphiphilic coatings comprising ethylene glycol and fluorinated groups and their response to protein adsorption.
Amphiphilic polymer coatings were prepared by first generating surface-anchored polymer layers of poly(2-hydroxyethyl methacrylate) (PHEMA) on top of flat solid substrates followed by postpolymerization reaction on the hydroxyl terminus of HEMA's pendent group using three classes of fluorinating agents, including organosilanes, acylchlorides, and trifluoroacetic anhydride (TFAA). The distributi...
متن کاملDissipative particle dynamics simulations of toroidal structure formations of amphiphilic triblock copolymers.
In this paper, the dynamic assembly of toroidal micelle structures of amphiphilic triblock copolymers in dilute solution has been investigated using dissipative particle dynamics simulations. The amphiphilic molecule is represented by a coarse-grained model, which contains hydrophilic and hydrophobic particles. Some microstructures of complex morphology having toroidal micelles have been observ...
متن کامل